Unc-1: a stomatin homologue controls sensitivity to volatile anesthetics in Caenorhabditis elegans.
نویسندگان
چکیده
To identify sites of action of volatile anesthetics, we are studying genes in a functional pathway that controls sensitivity to volatile anesthetics in the nematode Caenorhabditis elegans. The unc-1 gene occupies a central position in this pathway. Different alleles of unc-1 have unique effects on sensitivity to the different volatile anesthetics. UNC-1 shows extensive homology to human stomatin, an integral membrane protein thought to regulate an associated ion channel. We postulate that UNC-1 has a direct effect on anesthetic sensitivity in C. elegans and may represent a molecular target for volatile anesthetics.
منابع مشابه
A stomatin and a degenerin interact to control anesthetic sensitivity in Caenorhabditis elegans.
The mechanism of action of volatile anesthetics is unknown. In Caenorhabditis elegans, mutations in the gene unc-1 alter anesthetic sensitivity. The protein UNC-1 is a close homologue of the mammalian protein stomatin. Mammalian stomatin is thought to interact with an as-yet-unknown ion channel to control sodium flux. Using both reporter constructs and translational fusion constructs for UNC-1 ...
متن کاملTail clamp responses in stomatin knockout mice compared with mobility assays in Caenorhabditis elegans during exposure to diethyl ether, halothane, and isoflurane.
BACKGROUND The gene unc-1 plays a central role in determining volatile anesthetic sensitivity in Caenorhabditis elegans. Because different unc-1 alleles cause strikingly different phenotypes in different volatile anesthetics, the UNC-1 protein is a candidate to directly interact with volatile anesthetics. UNC-1 is a close homologue of the mammalian protein stomatin, for which a mouse knockout w...
متن کاملA stomatin and a degenerin interact in lipid rafts of the nervous system of Caenorhabditis elegans.
In Caenorhabditis elegans, the gene unc-1 controls anesthetic sensitivity and normal locomotion. The protein UNC-1 is a close homolog of the mammalian protein stomatin and is expressed primarily in the nervous system. Genetic studies in C. elegans have shown that the UNC-1 protein interacts with a sodium channel subunit, UNC-8. In humans, absence of stomatin is associated with abnormal sodium a...
متن کاملUNC-1 Regulates Gap Junctions Important to Locomotion in C. elegans
In C. elegans, loss-of-function (lf) mutations of the stomatin-like protein (SLP) UNC-1 and the innexin UNC-9 inhibit locomotion [1, 2] and modulate sensitivity to volatile anesthetics [3, 4]. It was unknown why unc-1(lf) and unc-9(lf) mutants have similar phenotypes. We tested the hypothesis that UNC-1 is a regulator of gap junctions formed by UNC-9. Analyses of junctional currents between bod...
متن کاملIdentification and Characterization of Human SLP-2, a Novel Homologue of Stomatin (Band 7.2b) Present in Erythrocytes
Human stomatin (band 7.2b) is a 31-kDa erythrocyte membrane protein of unknown function but implicated in the control of ion channel permeability, mechanoreception, and lipid domain organization. Although absent in erythrocytes from patients with hereditary stomatocytosis, stomatin is not linked to this disorder. A second stomatin homologue, termed SLP-1, has been identified in nonerythroid tis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 15 شماره
صفحات -
تاریخ انتشار 1998